Also see unary case and 1-LA case.

(Row is simulated by/converted in column)

1DFA1NFA2DFA2NFAOM-1-LAOM-D1-LA
1DFA/(trivial)(trivial)(trivial)(trivial)(trivial)
1NFA 💡/
💡
(trivial)(trivial)
💡
2DFA 💡 💡/(trivial)(trivial)(trivial)
2NFA 💡 💡
💡
/(trivial)
💡
OM-1-LA 💡 💡
💡
💡/
💡
OM-D1-LA 💡 💡 💡 💡(trivial)/
  • (trivial) means that the simulated machine is a (pseudo)subcase of the simulating machine
  • cases not dependent on OM-1-LA are specified in the map for Finite State Automata
  • 1NFAOM-D1-LA: ^1NFAtoOMD1LA
    • : since 1NFA1DFA is and 1DFAOM-D1-LA is
    • relaxed form of the Sakoda and Sipser conjecture with extended 2DFA
  • 2NFAOM-D1-LA: ^2NFAtoOMD1LA
    • : since 2NFA1DFA is and 1DFAOM-D1-LA is
    • relaxed form of the Sakoda and Sipser conjecture with extended 2DFA
  • OM-1-LA1DFA: ^OM1LAto1DFA
  • OM-1-LA1NFA: ^OM1LAto1NFA
  • OM-1-LA2DFA: ^OM1LAto2DFA
  • OM-1-LA2NFA: ^OM1LAto2NFA
  • OM-D1-LA1DFA: ^OMD1LAto1DFA
    • : transition table construction for general 1-LA {PigPis14}
    • : otherwise with OM-D1-LA1DFA we would get a 1DFA for with as a OM-D1-LA (2DFA) of size accepts
  • OM-1-LAOM-D1-LA: ^OM1LAtoOMD1LA
  • OM-D1-LA1NFA: ^OMD1LAto1NFA
    • : since OM-D1-LA1DFA is and 1DFA1NFA is (previously mistakenly considered poly)
    • : witness language (OM-D1-LA + fooling set) (proven by us)
  • OM-D1-LA2DFA: ^OMD1LAto2DFA
    • : simulation via computation trees given in {PigPri23a}
  • OM-D1-LA2NFA: ^OMD1LAto2NFA